
 

  Abstract

 

Many NASA planning problems are over-subscription
problems – that is, there are a large number of possible goals
of differing value, and the planning system must choose a
subset that can be accomplished within the limited time and
resources available. Examples include planning for
telescopes like Hubble, SIRTF, and SOFIA; scheduling for
the Deep Space Network; and planning science experiments
for a Mars rover. Unfortunately, existing planning systems
are not designed to deal with problems like this – they expect
a well-defined conjunctive goal and terminate in failure
unless the entire goal can be achieved. In this paper we
develop techniques for over-subscription problems that assist
a classical planner in choosing which goals to achieve, and
the order in which to achieve them. These techniques use
plan graph cost-estimation techniques to construct an
orienteering problem, which is then used to provide heuristic
advice on the goals and goal order that should be considered
by a planner.

 

1. Introduction

 

Many NASA planning problems are over-subscription prob-
lems – that is, there are a large number of possible goals of
differing value, and the planning system must choose a sub-
set that can be accomplished within the limited time and re-
sources available. For example, space and airborne
telescopes, such as Hubble, SIRTF, and SOFIA, receive
many more observation requests than can be accommodated.
As a result, only a small subset of the desirable requests can
be accomplished during any given planning horizon. For a
Mars rover mission, there are many science targets that the
planetary geologists would like to visit. However, the rover
can only visit a few such targets in any given command cycle
because of time and energy limitations, and limitations on
the rover’s ability to track targets.

Unfortunately, planning systems are generally not de-
signed to deal with over-subscription problems. Most sys-
tems expect to be given a well-defined conjunctive goal and
attempt to synthesize a plan to achieve the entire goal. They
are not able to consider the values of the different goals, or
to choose an appropriate subset of the goals that can be ac-
complished within the limited time and resources available.

In practice, most over-subscription problems have been
addressed by using simple “greedy” approaches. For an

earth-observing satellite (where slewing is not possible, or
slewing times are short) one can create a reasonable obser-
vation schedule by considering observations in descending
order of their importance or priority. If the observation being
considered is still possible, it is added to the schedule; oth-
erwise it is discarded. This approach can work reasonably
well for problems in which the cost of achieving an objective
does not depend on the order in which the objectives are
achieved. Unfortunately, this assumption does not hold for a
Mars rover. The reason is that there is a significant cost in
moving from one target to the next, and that cost depends on
the distance and terrain between the two targets. In other
words, the ordering of the targets has a strong influence on
the overall cost of visiting those targets. As a result, much
more powerful and informed search heuristics are required
to help a planner choose the targets to visit and the order in
which to visit them.

In this paper, we develop a technique for solving over-
subscription planning problems. The technique involves
constructing an abstracted version of the planning problem,
and then using the resulting solution(s) to provide heuristic
advice to the planner on the goals and steps that should be
considered, and the order in which they should be consid-
ered. The abstracted version of the problem is formed by
first estimating the costs of achieving each different objec-
tive (goal) using a plan graph. This information is then used
to construct an 

 

orienteering problem

 

, a variant of a traveling
salesman problem. Solutions to the orienteering problem
then provide the heuristic information needed for guiding
the planner.

In the next section, we discuss plan graph distance esti-
mation techniques, and show why they alone are not ade-
quate for guiding search in over-subscription problems. In
Section 3 we introduce the orienteering problem, and show
how an orienteering problem coupled with plan graph dis-
tance estimation techniques can provide a useful abstraction
of a rover planning problem. We then show how the solution
to this orienteering problem can provide guidance to the
planner search process. Throughout these two sections we
limit our attention to a simple rover planning problem,
where the mapping between the problem and the orienteer-
ing problem is relatively obvious. In Section 4, we general-
ize the graph construction and solution process so that it
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applies to arbitrary planning problems. In Section 5, we
present some preliminary experimental results on the rover
problem. Finally we discuss related work and some current
limitations of the approach.

 

2. Plan Graph Distance Estimates

 

A number of recent high-performance planning systems use
a plan graph (Blum & Furst, 1997) to compute an estimate
of the resources and time required to achieve goals from
states encountered in the search process (e.g. Hoffman 2002,
2003; Do & Kambhampati 2003; Edelkamp 2003). This in-
formation is used to select among the different alternative
search states.

 

1

 

 To see how this works, consider the simple
rover example shown in Figure 1, in which there are three

target locations (rocks) with various paths along which the
rover can travel. (Assume these paths are precomputed using
path planning algorithms.) Both a sample and an image are
desired at Loc

 

1

 

, an image is desired at Loc

 

2

 

 and a sample at
Loc

 

3

 

. 
Figure 2 shows an abbreviated plan graph for the first two

levels of this simple problem. Level 1 of the graph shows
that it is possible for the rover to reach any of the three target
locations with only one action. Level 2 shows that any indi-
vidual experiment can be achieved with only two actions.
Thus, the plan graph provides an optimistic assessment of
which actions and propositions are possible. Since actions
take time and resources, the graph can be used to compute
estimates of the time and resources needed to achieve a goal
or objective. In the example in Figure 2, numbers next to the
actions indicate the cost of each action. With these numbers,
we can use the graph to estimate the cost of achieving each
of the objectives at level 2. For example, in order to have a
sample at rock 1, we would need to move to rock 1 and then
collect the sample, giving a cost of 4+3=7.   These cost cal-
culations can be done very rapidly in a plan graph by a sim-
ple forward sweep through the graph. Figure 3 shows a
simple algorithm for doing this.

During planner search, this kind of heuristic “distance
measure” can be used to select between different possible
ways of achieving a goal. For example, if the goal is to have
the sample at location 3, then it is better to go directly there
rather than via either location 1 or location 2. If a direct path
is not available, the graph would tell us that it is better go via
location 2 (cost 8) rather than via location 1 (cost 9). It is this
idea that provides much of the basis for the search guidance
used by the competitive planners in the recent planning com-
petition (Long & Fox, 2003). 

For over-subscription problems, we could use the same strat-
egy to estimate the cost of achieving each possible goal from
the current state, and then try to use this information to select
the most appropriate set of goals to achieve. However, we
must also take the value of the goals into account. Thus the
problem of choosing the set of goals becomes a sort of bin-
packing problem in which we are trying to pack the most
value into the bins of available resources. For example, sup-
pose that the rover is at location 1, but has only four units of
energy available. If we construct a plan graph starting at lo-

 

1. More precisely, these planning systems use this distance infor-
mation to extract a relaxed plan for the goals, then use this relaxed
plan as an estimate of the cost of achieving the goal from the
search state.

 

Figure 1:  

 

Simple rover scenario with three target locations. A
sample and an image are desired at the first location, an image at
the second, and a sample at the third. Only certain traversal paths
are assumed possible because of terrain and visual tracking
limitations. Numbers indicate time required to traverse paths.
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Figure 2:  

 

A portion of a simple plan graph for the rover problem.
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 represents a move operation from 
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 to 
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 represents a
sampling operation, and 

 

Im

 

x

 

 a close up image operation at location

 

x

 

. Numbers next to actions indicate action costs. Numbers next to
propositions are the cost estimates for achieving those
propositions. For simplicity, mutual exclusion relationships are
not shown.
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Simple plan graph cost estimation. Here 
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cation 1 and do the cost estimation, the graph will tell us that
three goals are possible: Sample

 

1

 

,Image

 

1

 

, and Image

 

2

 

, with
costs of 3, 1 and 3 respectively. Solving the (trivial) bin-
packing problem, we see that it is possible to achieve either
Sample

 

1

 

 & Image

 

1

 

, or Image

 

1

 

 & Image

 

2

 

. If samples are
worth more than images, then the first option is better. Oth-
erwise, the second option is better.

While this approach works for this very simple example,
it generally does not work well for the rover problem. The
reason is that the cost of moving to a target depends heavily
on the location of the previous target. Unfortunately, the
heuristic distance estimates derived from a planning graph
implicitly make the assumption that the goals are indepen-
dent. For example, if the rover starts at location 0 with eight
units of energy, the plan graph tells us that the three objec-
tives are possible: Sample

 

1

 

,Image

 

1

 

, and Image

 

2

 

 with costs 7,
5 and 5 respectively. Based on these costs we would be led
to the conclusion that only one experiment can be performed
while in reality it is possible to achieve Sample

 

1

 

 & Image

 

1

 

,
or Image

 

1

 

 & Image

 

2

 

.

The problem is that in the plan graph in Figure 2, the cost es-
timate for getting to location 1 assumes we are coming from
location 0, likewise for locations 2 and 3. However, locations
1 and 2 are close together, so the cost estimate of 4 for get-
ting to location 2 no longer applies if we choose to go to lo-
cation 1 first. Thus, the plan graph might allow us to pick the
best or nearest single goal to accomplish, but it provides lit-
tle immediate guidance if we want to visit several locations
and achieve several goals in succession.

Several researchers have augmented plan graph cost estima-
tion techniques to better account for interaction between ac-
tions in the graph. In particular, Hoffman (2002, 2003), Do
& Kambhampati (2003), Edelkamp (2003) and Gerevini
(2003) extract a relaxed plan from the planning graph and
use this plan to estimate cost. However, this technique is pri-
marily aimed at accounting for action duplication in estimat-
ing the cost of achieving a well-defined goal. For an over-
subscription problem, this technique might improve the es-
timates for individual goals, but it does not solve the prob-
lem of interaction between the goals. The fundamental
problem is that the resulting cost estimates assume that the
goals are independent, and they are not. Thus, plan graph
cost estimation alone does not seem to provide an adequate
mechanism for choosing goals and goal ordering in such
problems.

 

3. The Orienteering Problem

 

To overcome the difficulties mentioned above, we observe
that there is a strong similarity between the rover problem
and a variant of the traveling salesman problem know as an

 

orienteering problem

 

 (Keller, 1989). In an orienteering
problem, we are given a set of cities, a prize for each city
(possibly zero), and a network of roads between cities. The
objective is for a salesman to collect as much prize money as
possible given a fixed amount of gas. The orienteering prob-
lem has been studied extensively in the operations research
literature, and both exact and approximate algorithms have

been developed for solving this problem (Keller, 1989). To
recast the rover problem as an orienteering problem, the cit-
ies become target sites, and the roads are paths between dif-
ferent targets, with costs corresponding to the resources
required for the rover to traverse the path. The prizes are the
scientific values of the experiments at a given target site.
However, since there can be multiple experiments possible
at a given site, and there are time and resource costs associ-
ated with each experiment, we need to create a separate
“city” in the graph for each experiment at a site. We then add
directed edges from the site to the experiments at that site,
and return edges from the experiments back to the site. The
resulting graph for our simple rover example is shown in
Figure 4.

We can assign a cost of zero to the return edges from an ex-
periment to a site. However, an edge from a target site to an
experiment should be assigned a cost that reflects the time
and resources required to perform that experiment. Thus, for
the sample at target1, we label the edge from target1 to
sample1 with a cost of 3, corresponding to the cost of obtain-
ing sample1, once we are at target1. In our simple example,
each experiment is only a single step, so it is easy to come
up with these numbers. In reality, experiments require many
steps, and planning is required to generate these steps. We
obtain the numbers for experiment edges in the orienteering
problem using plan graph cost estimates, as described in the
previous section. In particular, we ignore rover location in
the plan graph by assigning a cost of zero to all locations. We
can then compute cost estimates for all the objectives in the
plan graph. These estimates provide the numbers that we
need for each experiment edge in the orienteering problem.
We can summarize the approach as follows:

1. Construct a plan graph and use it to estimate the time
and resources required to perform the different experi-
ments at each target site. (This can be accomplished for
all sites simultaneously by assigning a cost of zero to
all locations in the graph.)

2. Construct an orienteering problem, like that shown in
Figure 4, using path planning to compute the edge cost
for each move between sites, and using the estimates
computed in Step 1 for the edge costs between a site
node and the science experiments at that site.

 

Figure 4:  

 

Orienteering graph for the rover problem. Cost
estimates for each experiment are obtained using plan-graph cost
estimation techniques.
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3. Solve the orienteering problem and use the resulting
solution to guide the planning process.

A solution to this orienteering problem suggests which sites
the rover should visit, the order in which to visit those sites,
and which experiments should be performed at those sites.
This information can then be used as heuristic guidance for
a planner. 

 

Searching for Plans

 

It might appear that solving the orienteering problem pro-
vides an exact solution to the rover’s planning problem, and
that no additional planning would therefore be necessary.
While this is true in our very simple example, it is not true in
general. There are several reasons for this:

• Some of the steps for an individual experiment may
interfere with each other. As a result, the experiment
cost estimates obtained from the plan graph may be
inaccurate.

• Different experiments can share steps or can inter-
fere with each other. For example, obtaining a sam-
ple and taking a close up image both involve
deploying the arm, so it is possible to share this step
if both experiments are performed. This interaction
is not modeled by our abstracted orienteering prob-
lem, which implicitly assumes that the only interac-
tion between experiments results from the location
of the rover.

• There may be time constraints on certain experi-
ments (perhaps due to illumination constraints), or
there may be required events (like communication)
that must occur at specific times. These constraints
are not reflected in the orienteering problem, so the
resulting solution may be flawed.

As a result, the orienteering problem is only an abstraction
of the real planning problem, and the solution to the orien-
teering problem may not prove to be a solution to the actual
planning problem. 

Suppose that we have a solution to the orienteering prob-
lem, and use it as heuristic advice to a planner to suggest the
goals and the order in which to achieve those goals. When
detailed planning is performed, the resulting plan could turn
out to be much better or worse than that predicted by the
heuristic estimates. In either case, it may be desirable to con-
tinue searching for a better plan. One possible approach is to
search for another solution to the orienteering problem and
try this as heuristic advice.   Many of the algorithms devel-
oped for solving the orienteering problem (Keller 1989) are
based on either local search, or branch and bound, and can
therefore be adapted to provide a stream of solutions to the
problem. A more ambitious possibility is to update the edge
costs for the orienteering problem to reflect the actual values
found in planning. One could then solve the orienteering
problem again, and use the updated solution to continue
guiding the planning process.

 

4. Generalizing to Multiple Interactions

 

Thus far, we have assumed that the only strong source of in-
teraction between experiments is the location of the rover.
This assumption allowed us to construct an orienteering
problem in which the “cities” correspond to locations and
experiments. While this is a far better model than that pro-
vided using only plan graph cost estimation techniques, it
may not provide sufficient guidance for some problems. For
example, suppose that a rover instrument has a significant
warm up cost (energy), but once it is warm, it can be kept
warm for additional experiments with little additional (ener-
gy) cost. In this case, there may be considerable advantage
to performing a sequence of experiments at different sites
using that instrument. This violates our assumption that “lo-
cation” is the only rover attribute for which there is strong
interaction between experiments. In order to fix this prob-
lem, we need to consider instrument-status, along with rover
location in our creation of the orienteering problem. Specif-
ically, the cities in the orienteering problem now become lo-
cation/instrument-status pairs. In effect, we are now solving
the orienteering problem on a projection of the state space
for the rover – a projection onto location and instrument-sta-
tus propositions.

For our simple rover problem suppose that the instrument
is required for the two imaging operations, but not for col-
lecting the samples. The graph would consist of two copies
of the orienteering graph from Figure 4, one for the instru-
ment off, and the other for the instrument on. The two graphs
would be cross connected by the operations of turning the
instrument on or off, as shown in Figure 5. Because the im-

aging operations require that the instrument be on, these two

 

Figure 5:  

 

Orienteering problem for cross product of location and
instrument status.
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objectives only appear in the bottom half of the graph, where
the instrument is on. However, the sampling operations
don’t rely on the instrument, so they appear in both the top
and bottom halves of the graph.

This brings up an interesting issue: the graph in Figure 5
contains two copies of some of the objectives, Sample

 

1

 

 and
Sample

 

2

 

. As a result, it is possible for the solution algorithm
to collect the reward for this goal twice, by first visiting it in
the upper part of the graph, then transitioning to the lower
part (or vice versa). To fix this problem we add mutual ex-
clusion (mutex) edges between all pairs of identical objec-
tives appearing in the graph. We then modify the solution
algorithm for the orienteering problem to respect those mu-
tex constraints. This turns out to be fairly simple; the solu-
tion algorithm already keeps track of which cities have been
visited so that it does not collect rewards twice when return-
ing to a city. All that is necessary is that when a city is visited
for the first time, we also add any mutex cities to the set of
visited cities. This prevents the collection of any reward
when visiting those cities.

For our simple rover problem, the structure of the graph
in Figure 5 seems fairly obvious. However, if we wish to ap-
ply this technique more broadly, we need to be able con-
struct this graph automatically. This turns out to involve
several steps. 

First, assume that we have a 

 

basis set

 

 O of propositions
that will form the states in our orienteering problem. What
we want to construct is the projection of the problem state
space onto that set of propositions. However, this is general-
ly intractable, since it requires that we enumerate the entire
state space, project the states onto the desired propositions
(get rid of the other propositions), and then combine identi-
cal projected states. Instead, we can construct an optimistic
approximation of the projected state space by starting with a
projection of the initial state, applying all applicable actions
to this state, and projecting the resulting states. We repeat
this process until no new projected states are found. This al-
gorithm is summarized in Figure 6. 

For our example, the result of this process is the graph in
Figure 5, but without the goal (experiment) nodes and edges.

Next, we need to add the goal (experiment) nodes and
edges to the graph. To do this we need to figure out which
goal (experiment) nodes connect to which projected states in

the orienteering graph. To determine this, we construct a re-
laxed plan for each goal in the plan graph. However, in doing
this construction, we assume that all propositions in the ori-
enteering graph are available in the initial conditions of the
plan graph. In other words, in constructing the relaxed plan,
we stop the backward search on a proposition if it has cost
zero. The resulting relaxed plan will rely on a (possibly emp-
ty) set of “initial conditions” or zero-cost propositions be-
longing to the orienteering graph. This set of propositions
corresponds to one or more of the states in the orienteering
graph. As a result, we add a copy of the goal to the graph for
each such state, and connect it to that state. In our rover ex-
ample, the relaxed plan for Image

 

1

 

 relies on the initial con-
ditions Loc

 

1

 

 and Instrument-on. As a result only one copy of
the goal is added to the orienteering graph and is connected
to the state {Loc

 

1

 

, Instrument-on}. In contrast, the relaxed
plan for Sample1 relies only on Loc1 so two copies are add-
ed, one for the projected state {Loc1, Instrument-off} and
one for the projected state {Loc1, Instrument-on}. Similar
arguments apply to Image2 and Sample3.

An edge from a state node to a goal node is assigned a
cost equal to the cost of the relaxed plan for that goal. Thus,
for our example, the edges from the state node {Loc1, Instru-
ment-on} to the goals Image1 and Sample1 are the cost of
their respective relaxed plans (1 and 3). Finally, we mark any
duplicate pairs of goals in the graph as mutex. This algo-
rithm is summarized in Figure 7.

In general, the size of the orienteering graph constructed
by our method is exponential in the number of independent
propositions. If O contains only location propositions, the
size of the graph is on the order of the number of locations

(plus experiments). If we have location and instru-
ment-state, it is . If we have two
instruments with significant warm-up costs, it is

, etc. Ultimately, if all proposi-
tions end up in the basis set O, the orienteering graph would
be the complete state space for the problem. Thus the suc-

1. Let 
(the initial state projected onto the propositions O.)

2. Let States={I}, Nodes={I}, Edges={}

3. While States is non-empty

a. Let s = Pop(States)

b. For each action a applicable in s:

Let  
(the projection onto O of a applied in s)

Unless s’ is in Nodes, add s’ to Nodes and States.

Unless s’=s, add the edge <s,s’> to Edges

Figure 6:  Projected state space construction
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1. Construct a projected state space for the propositions
in the basis set O

2. Mark all propositions in O as having zero cost in the
plan graph

3. For each goal g:

a. Construct a relaxed plan r for g (halting at zero cost
propositions in the plan graph)

b. Let f be the initial or foundation propositions for r

c. For each state  in the projected state space consis-
tent with f, add a node  to the graph with reward
equal to that of the goal g.

d. Add an edge from  to  with cost equal to the
cost of the relaxed plan r. Add a return edge from 
to  with cost 0.

e. Add a mutex edge between all nodes .

Figure 7:  Orienteering graph construction
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cess of this method depends on having a reasonably small
basis set.

Identifying the Basis Set
For the rover problem, it seems fairly clear which at-

tributes should be treated in the orienteering graph and
which can be estimated using planning graph cost estima-
tion. However, if we wish to apply these techniques to gen-
eral planning problems, we need some way of automatically
deciding which attributes belong in the orienteering graph.
To do this, we can perform a kind of sensitivity analysis on
the plan graph to find those attributes that have significant
impact on the cost of achieving each goal. For example, in
the plan graph shown in Figure 2, consider the relaxed plan
for each one of the objectives. We note that all of these plans
affect the location of the rover and leave it in a state other
than the initial state.   We therefore change the location in the
initial conditions of the plan graph to see what impact this
has on the cost estimates for different objectives. For the
goal Sample1, the estimated cost varies from 5 to infinity,
depending on the initial location. As a result, location seems
like a good candidate for treatment in the orienteering graph.
Similarly, if the status of an instrument has a significant im-
pact on the cost of achieving some of the objectives, it too
would be a good candidate for the orienteering graph. Using
this technique, we can automatically identify those attributes
for which the goals strongly interact.

To make this precise, we first define the net effects of a
(relaxed) plan as being the propositions that are true/false at
the end of the plan, that were not true/false in the initial con-
ditions. To construct the net effects of a plan, we simply be-
gin with the initial state, and simulate the actions of the
(relaxed) plan. At the end, we take the set difference between
this “state” and the initial state. Note that in doing this sim-
ulation, we are ignoring action preconditions, so the fact that
a relaxed plan may not be a legal plan has no impact on the
computation of the set of net effects.2 In the plan graph in
Figure 2, the relaxed plan for achieving Sample1 has the net
effects {Loc1, ¬ Loc0, Sample1}. Similarly for the other ob-
jectives. Intuitively the net effects of a relaxed plan tell us
how achieving that goal is likely to change the initial state.

Using this notion, the algorithm for constructing the basis
set O is shown in Figure 8. This algorithm is somewhat more
sophisticated than we suggested above. In particular, we do
not actually change the initial conditions or structure of the
graph when determining the effects of a relaxed plan on the
cost of achieving other goals. Instead, we change the cost in-
formation in the graph by assuming, in turn, that the cost of
each net effect is 0, and that propositions mutex with the net
effect start out with infinite cost. For example, if we consider
the net effect Loc1 for Sample1, we would set the cost of
Loc1 to 0 and the cost of Loc0 to , since Loc0 is mutex with
Loc1. While this is much more efficient than changing the

structure of the graph, it is still important to note that this
process is fundamentally n2 in the number of goals, since we
must examine the effect of each net effect for a goal on all
the other goals.3

The last line of the algorithm in Figure 8 also leaves open
the question of what we mean by “significantly different”.
We might say that the cost of c’ is significantly different
from c if:

However, this doesn’t take into account the fact that some
goals may be much more costly than others – large differ-
ences for one goal may be insignificant with respect to the
overall planning problem. We could take this into account by
instead making the cost difference relative to the total
amount of resource available, or to the average cost over all
goals, e.g.:

How we set the threshold controls the size of the resulting
basis set. If the threshold is small, then the basis set will be
large and the number of states in the orienteering graph may
explode. In the worst case, where all propositions end up in
the basis set, the orienteering graph would simply be the
complete state space for the problem. However, if we set the
threshold larger, the basis set will tend to contain only those
propositions that have a significant effect on the cost of
achieving the different goals. Of course, it is important to re-
alize that this method for automatically constructing the ba-
sis set is heuristic in nature. A relaxed plan for a goal is only

2. For a normal plan the set of net effects will always be consis-
tent. Likewise for a relaxed plan if the initial state is fully speci-
fied. For our purposes it is not necessary that the set of net effects
be consistent.

∞

1. Construct a plan graph for the problem and compute a
cost estimate c for each goal g in the plan graph.

2. Let O={}

3. For each goal g in the plan graph:

a. Construct a relaxed plan r for g

b. For each net effect e of r:

Reset the cost information in the plan graph. (Initial
conditions are set to 0, all other propositions and
actions are set to .)

Set the cost of e to 0 in the plan graph

For each proposition m mutex with e, set the cost of
m to .

Compute a revised cost estimate c’ for each goal g’
in the graph.

If  for which c’ is significantly different from
c, add the effect e to O.

Figure 8:  Constructing the basis set O for the orienteering graph.

3. In practice there is often significant overlap between the net
effects for different goals. As a result, caching can be used to fur-
ther improve the above algorithm.
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an approximation. It therefore may not accurately reflect the
impact that achieving the goal will have on other goals. Fur-
thermore, we are considering each net effect separately,
which may exacerbate or disguise interactions.

5. Implementation and Experiments
Currently, we have only a partial implementation of the tech-
niques presented in the previous sections. In particular, our
implementation does not yet automatically construct the ba-
sis set for the orienteering graph. Furthermore, our automat-
ed construction of the orienteering graph currently only
handles basis sets involving a single predicate, such as loca-
tion. The implementation consists of:

1. Plan graph construction – a simple plan graph is con-
structed to quiescence for the planning problem.

2. Cost estimation – given a basis set of propositions to be
ignored (such as location propositions), costs are com-
puted for the objectives (goals) by setting the costs for
ignored propositions to zero and performing the stan-
dard forward sweep through the plan graph.

3. Relaxed plan extraction – relaxed plans are extracted
from the planning graph for each objective, assuming
that all propositions with zero cost are available in the
initial conditions.

4. Orienteering problem construction – given a single
basis predicate (such as location), an orienteering prob-
lem is constructed corresponding to the projection of
the state space onto that predicate. This projection is
extracted from the propositions and set of transitions
present in the plan graph for that predicate.

5. Goal node addition – each objective (goal) is added to
the orienteering graph. It is connected to the projected
state node in the orienteering graph corresponding to
the zero-cost proposition used in the relaxed plan for
that goal.

6. Orienteering problem solution – A beam search (using
a greedy heuristic lookahead function for evaluation) is
used to find solutions to the orienteering problem.

7. Planner guidance – the best solution to the orienteering
problem is used to supply the goals to a POCL planner.
The goals are fed to the planner one at a time in the
order suggested by the solution to the orienteering
problem. The planner can link to actions already in the
plan structure, but cannot violate existing causal links.
Planning terminates when resources are exhausted, or
no remaining goals (from the solution to the orienteer-
ing problem) can be achieved.

We have performed some preliminary experiments with this
system on rover problems involving 10, 25, 50, and 100
rocks randomly distributed in a 50x50 square. Between 1
and 3 experiments were available at each rock with experi-
ment values chosen randomly in the range of 1 to 5. 75% of
the n2 paths between rocks were assumed to be traversable,
with costs equal to the distance along the path. For the large
problems, we gave the rover sufficient resources to allow it
to visit approximately 10% of the rocks. For smaller prob-

lems we tried a range of resource values. We used a beam
width of 25 when searching for solutions to the orienteering
problem.

In all cases, construction and solution of the orienteering
problem is very fast (0.3 seconds for the most difficult prob-
lems). Our technique for solving the orienteering problem is
approximate, so we are not guaranteed to find the optimal
solution. However, by performing experiments with very
large beam width, we believe that we are obtaining optimal
solutions for smaller problems and solutions within a few
percent of optimal for the largest problems. Solution quality
tends to drop off with a beam width of less than 15, and a
beam width of greater than 50 slows down the solution pro-
cess significantly. For these problems, a beam width of 25
seems to provide a good compromise between solution
speed and solution quality.

We have also performed preliminary comparisons of the
resulting plan quality for our approach against plan quality
using greedy search strategies. We are typically getting plan
quality improvements averaging from 10% to 30% depend-
ing on the density of goals. When the field is rich in goals,
greedy approaches tend to work reasonably well. But when
the goals are widely scattered, or there are many intermedi-
ate waypoints with no reward, the choice of goals and goal
order can make a large difference in net reward. Figure 9

shows a typical comparison of plan reward for the orienteer-
ing approach, and a fairly sophisticated greedy strategy as
resources available to the planner range from 0 to 50. Even-
tually, as resources become plentiful, the greedy solutions
catch up to the orienteering solutions.

6. Related Work
Few planning systems are able to solve over-subscription
problems. Those that can are usually hand crafted for a spe-

Figure 9:  Plan quality (reward) for orienteering guidance and
greedy guidance of a planner on a moderate sized problem
involving 25 rocks in a 50x50 area.
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cific domain and deal primarily with scheduling rather than
planning problems. Examples of this include the scheduling
systems for the Hubble space telescope (Kramer &
Giuliano, 1997), for SIRTF (Kramer, 2000), and for the
Landsat 7 satellite (Potter & Gasch 1998). Recently Kramer
and Smith (2003) have investigated some heuristics for re-
tracting tasks in over-subscription scheduling problems.
However, it is not clear that these heuristics can address the
kind of strong interactions found in the rover problem, or
can be easily applied to planning problems. The Aspen sys-
tem (Chien et. al, 2000) uses a local search approach to plan-
ning for over-subscription problems. However, it relies on
simple greedy heuristics together with hand-coded domain-
dependent search control information. 

Markov Decision Processes (MDP) naturally permit the
expression of multiple objectives and values for the objec-
tives. Policy or value iteration can then be used to find opti-
mal plans. However, it is tricky to prevent repeated
collection of the same reward – in order to do this, one must
add an additional proposition to the state for each possible
goal. This increases the size of the state space by a factor of
two for each possible goal.

Many recent planning systems make use of solutions to ab-
stracted versions of the planning problem to guide planner
search. These approaches typically extract relaxed plans
from a planning graph, and use these relaxed plans to pro-
vide heuristic guidance to the planner (Do & Kambhampati,
2003; Edelkamp, 2003; Hoffman, 2002, 2003). The most so-
phisticated of these cost estimation methods are found in
Metric-FF (Hoffman, 2003), which incorporates continuous
variables into the planning graph, and SAPA (Do & Kamb-
hampati, 2003), which considers time/cost tradeoffs in its
heuristic calculations. Here we are constructing an orien-
teering problem to serve as the relaxed planning problem,
rather than relying solely on a plan graph. As we argued in
Section 2, a plan graph is not an adequate model for many
over-subscription problems. However, we do continue to
rely on plan graph cost-estimation techniques in order to
seed the orienteering problem.

Estlin et. al. (2002) have used a TSP solver to help order lo-
cations and waypoints in a continuous planning and execu-
tion system for a rover. In this case, however, the mapping to
the TSP is domain-specific, and is hard-wired into the sys-
tem. The TSP also does not include cost or reward informa-
tion for experiments at the different locations. Fox and Long
(2001) use specialized algorithms like TSP solvers to pro-
vide both heuristic guidance and actual solutions to subprob-
lems encounter during planning. In their case, they pick out
specialized subproblems by recognizing their structural
characteristics using domain analysis. 

This is quite different from the approach taken here. In
our case we form a single, global orienteering problem that
is an approximation to the planning problem and use it for
search guidance. The criteria for determining which propo-
sitions form the states in the orienteering problem is based
on analysis of the independence between goals and on how
the achievement of one goal affects the cost of achieving
others.

7. Conclusions
In this paper, we developed a novel technique for solving
over-subscription planning problems. The technique in-
volves constructing an abstracted version of the planning
problem and then using the resulting solution(s) to provide
heuristic advice to the planner on the goals and steps that
should be considered, and the order in which they should be
considered. The abstracted version of the problem is formed
by first estimating the costs of achieving each different ob-
jective (goal) using a plan graph. This information is then
used to construct an orienteering problem. Solutions to the
orienteering problem then provide the heuristic information
needed for guiding the planner. 

Although we presented the technique in the context of a rov-
er problem, the technique applies to over-subscription prob-
lems more generally. In particular, the orienteering graph
approach is useful whenever the order in which objectives
are achieved has a strong influence on the cost of achieving
those objectives. For such problems, simple greedy search
strategies are not likely to work well.

The difficulty in applying this approach to general over-
subscription planning problems is in recognizing which
propositions should be part of the orienteering graph, and
which can be treated using conventional plan graph cost es-
timation methods. We presented a technique for making
these decisions automatically. It performs a kind of sensitiv-
ity analysis in the plan graph to determine how the cost of
achieving each objective depends on the achievement of oth-
er objectives. If the cost of one or more objectives is highly
sensitive to conditions that are changed when achieving oth-
er objectives, then those propositions are good candidates
for the orienteering graph.

In Section 5, we indicated a number of limitations in our
current, very preliminary implementation. We are in the pro-
cess of removing these limitations. There are, however,
some deeper issues that we have not yet addressed. As we
mentioned in Section 3, time constraints on objectives, and
on required activities such as communications, are not con-
sidered in the orienteering graph. Although there has been
little work on solving orienteering problems with time con-
straints, it seems likely that some of the algorithms could be
adapted to deal with them. This could further improve the
accuracy of the approximate solutions, and thereby produce
better search guidance for a planner. However, there is likely
to be a cost to this increased accuracy, and it remains to be
seen whether this additional accuracy will pay off.
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